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Defining MD Linear Trajectory

and MD Plane Wave Signals

1 2 3( , , , )Mx t t t tK is a MD linear trajectory 
(LT) signal if there exists a direction                     

such that     
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Defining MD Linear Trajectory

and MD Plane Wave Signals

1 2 3( , , , )Mx t t t tK is an MD plane wave (PW) 
if it can be expressed in the form

1 2 3 1 1 2 2 3 3( , , , ) ( )M PW M Mx t t t t x d t d t d t d t= + + +K K
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One Reason Why MD Plane Waves Are Important

3 31 1 2 2e) ( ) e e( e M M
M

j tj t j t j tX j x dωω ω ω

∀ ∈

−− − −≡ ∫ tω t t
�

K

The basis function of the MD Fourier Transform is a MD 
plane wave:

1 1 2 2( )e M Mj t t tω ω ω− + +K
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Example: The Real part of the 3D basis function
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The 3D Spatio-temporal Linear Trajectory

Object Signals
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Example:  3D Linear Trajectory Object Signals
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Another example:  3D Linear Trajectory Object Signals
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3D Linear Trajectory Signals

A First Derivative Approximation
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The 3D Fourier Transform of Linear Trajectory Signals

3D velocity vector 3D Planar Support

3D FT
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The 3D Fourier Transform of Linear Trajectory Signals
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The ROS of the 3D Fourier transform, and therefore 
the 3D energy density function, of an ideal Linear 
Trajectory signal lies on a 3D plane in the 
frequency domain having a normal given by the 
velocity vector. 

We therefore need frequency-planar pass bands to 
filter ideal Linear Trajectory signals.
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Possible 3D Pass Bands for Selectively Filtering 

Linear Trajectory Signals

3D velocity vector 3D Planar Support
Frequency Planar (FP) - Uniform 
Bandwidth

Frequency Planar (FP) – Non-
uniform Bandwidth
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The 3D Fourier Transform of Plane Wave Signals

1 2 3 1 1 2 2 3 3( , , ) ( )PWx t t t x d t d t d t= + +

3D FT
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The 3D Fourier Transform of Plane Wave Signals

The ROS of the 3D Fourier transform, and therefore 
the 3D energy density function, of an ideal 3D 
plane wave lies on a 3D line through the origin in 
the frequency domain having a direction given by 
the DOA. 

We therefore need frequency-beam/cone shaped 
pass bands to filter ideal 3D plane wave signals.
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On the Relation between 3D Plane Wave Signals and 
3D Linear Trajectory Signals

We note that a 3D Plane Wave Signal is a special 
case of a 3D Linear Trajectory Signal for which 
every in-plane vector        is in the direction of 
zero-gradient

d DOA

n

n
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2D Plane Wave Signals

d DOA

n

n
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On the Design and Implementation of Linear 3D/4D Cone 
and Frequency Planar Filters for Selectively Filtering Plane 

Waves and Linear Trajectory Signals 

In the MD case, pass bands are required to have high-
selectivity in specific directions and no selectivity in 
other directions

Wide band

Narrow band
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The Arithmetic Complexity Problem

Order and Image Size
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3D FIR Narrow Cone Filters with No Attention to 
Directionality of the 3D Unit Impulse Response

to achieve directional 3D Cone Pass Band band widths 
of a few degrees, the order of a highly-selective 3D FIR 
Cone Filter is about (128,128,128)

for image processing applications, there are typically at 
least 512x512 pixels per frame, implying approximately 
(128)(128)(128)(512)(512) add/multiply operations per 
frame

this level of computational complexity has impeded the 
applications of highly-selective 3D Cone, Beam and 
Frequency-Planar filters
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Know Your Impulse Response

Especially if you must use FIR implementations
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The Unit Impulse Response of 3D Transfer 
Functions having Highly Directional Pass Bands

The unit impulse response has 

long  duration in directions that correspond to
narrow directional bandwidths and

short  duration in directions that correspond to wide 
directional bandwidths

1 2 3( , , )h t t t
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Take Advantage of the The Long and the Short of it 

Wide band

Narrow band

ω t

Long Transient

1 2( , )h t t

Short transient
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Knowing The Directionalities of the 
Transients of the 3D Impulse 

Response of a 3D Cone Filter can 
Reduce Computational Complexity 
by over Two Orders of Magnitude
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IIR Implementations in 1D

For example, 3D FIR order

3128

In many highly-selective 1D signal processing 
applications, IIR implementations have been used 
to reduce complexity and increase processing 
speeds (e.g. SC LDI ladder and Biquadratic filters, 
digital WDFs, etc.)  

Pseudo passivity underlies many of the above 
1D methods because stability and insensitivity to 
finite-precisions effects are superior

Applying similar ideas in MD is viable

2512
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Designing 3D IIR Filters

Reduced Complexity is a primary reason for IIR 
3D filters in image processing

Low-order IIR implementations can achieve 
narrow 3D pass bands and thereby the long 3D unit 
impulse response

PROBLEM: STABILITY
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Solution to the Stability Problem: Employ the 
Characteristic Equations of MD Pseudo-passive

Prototype Networks in the Denominator

1,2 1,2 1,2( 1) /( 1)s z z= − +

Order: (2,4)

12 13 14 15 16 17

12 1 23 24 25 26 27

13 23 1 34 35 36 37

14 24 34 2 45 46 47

15 25 35 45 2 56 57

16 26 36 46 47 2 67

17 27 37 47 57 67 2
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First-order 3D IIR Example: Pseudo-passive 3D 
Frequency-planar Resonance

Consider a simple 3D inductance element

The 3D transform impedance is given by the series 
connection

1 2 3( , , )Y s s s 1 1s L 2 2s L
3 3s L

1 1 2 2 3 3( )s L s L s L+ +
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First-order 3D IIR Example: Pseudo-passive 3D 
Frequency-planar Resonance

1 1 2 2 3 3( )s L s L s L+ +

self resonates in a 3D frequency plane 
where

1 1 2 2 3 3( ) 0L L Lω ω ω+ + =
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To Selectively Filter Linear Trajectory SignalsTo Selectively Filter Linear Trajectory Signals

1 1L Kv= 2 2L Kv= 3L K=

ensures that all  linear trajectory signals having velocity 

induce series resonance of the 3D inductance.

[ ]1 2 1v v= Tv
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3D Voltages At Resonant Velocity in a Pseudo passive 3D Voltages At Resonant Velocity in a Pseudo passive 

FirstFirst--order Frequencyorder Frequency--Planar (FP) Filter NetworkPlanar (FP) Filter Network

1 1L Kv= 2 2L Kv= 3L K=

Kirchoff’s Voltage Law at 3D Resonance

Signal Is In The 3D Passband

[ ]1 2 1v v= Tv



3131

3D Voltages At Non3D Voltages At Non--Resonant Velocity in a Pseudo Resonant Velocity in a Pseudo 
passive Frequency Planar Filter Network passive Frequency Planar Filter Network -- IdealizedIdealized

1 1L Kv= 2 2L Kv= 3L K=

Signal Is In The 3D Stopband

[ ]1 2 1v v≠ Tv
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Application 1 - Image Enhancement

output voxelsinput voxels

3D FP IIR Filter

1 2 3( , , )y n n n1 2 3( , , )x n n n
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Application 2 - Image Rejection

output voxelsinput voxels
3D FP IIR Filter

1 2 3( , , )y n n n
1 2 3( , , )x n n n
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Application 3 – Object Tracking

input voxels output voxels

3D FP IIR Filter

1 2 3( , , )y n n n
1 2 3( , , )x n n n
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3D Spatio-temporal 3D Beam Filters by Cascading 
3D Frequency-planar Filters

IIR Beam Filter

IIR FP 1

IIR FP 2

IIR BEAM
IIR FP 1 IIR FP 2
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3D Spatio-temporal 3D Beam Filters by Cascading 
3D Frequency-planar Filters

Beam Pass Band

IIR Beam Filter

IIR FP 1 IIR FP 2
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3D Cone Pass Bands are Preferred Pass Bands

for many Plane Wave Signals

Cone Pass Band
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Approximating 3D Cone Pass Bands for Plane 
Wave Signals Using 3D Cascaded Wedges

2D Fan Pass Band
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3D Wedges Using 2D Fans with 3D Signals

Cone Pass Band
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Cone Pass Band

Cascading 3D We
make 3D ‘Wedge-
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Cascading 3D Wedges to make 3D ‘Wedge-Cones’

1 1 2 2 3 3 1 1 2 2 3 3 1 1 1 3 3 2 2 2 3 3( , , ) ( , , ) * * * ( , ) * * * ( , )F Fy n x n x n T x n x n x n T h n x n T h n x n T∆ ∆ ∆ = ∆ ∆ ∆ ∆ ∆ ∆ ∆
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Application 4 : Acoustical Almost CD-
Quality Spatio-temporal Jamming using 

2D FIR Filter

89 sensor array

Sensor spacing                 cm

Array length          cm

Temporal sampling 
frequency                    KHz

Plane wave 2

0.3x∆ ≈

30≈

1 44
T

= ≈
∆

Plane wave 1 Plane wave 2
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Application 5:  Acoustical ‘Almost CD-Quality’ 
Spatio-temporal Jamming using 2D FIR Filters  

- Simulated in Matlab

Plane wave 1

Plane wave 2

Wave 1 in Pass Band

Wave 2 in Stop Band

INPUT – (Wave 1 + Wave 2)

OUTPUT 2( , )Y N x n T∆ ∆

Uses compensation method

Will allow some near field 
curvature – 5 degrees

Stop band attenuation 
decreases for smaller separation 
of DOAs 
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Application 6: Acoustical ‘Almost CD-
Quality’Spatio-temporal Jamming using 3D 

FIR/IIR Filters IN PROGRESS

Plane wave 2

Wave 1 in Pass Band

Wave 2 in Stop Band

INPUT – (Wave 1 + Wave 2)

OUTPUT 

Uses compensation method

Will allow some near field 
curvature – 5 degrees

Stop band attenuation 
decreases for smaller separation 
of DOAs 

DOA d
Plane wave 1

1 2 2( , , )Y N x N x n T∆ ∆ ∆
Receiving array of MEM 
microphones, 20x20



4646

Application 7:  Object Extraction, Based on Depth, 
Using 4D IIR Filters Applied to 4D Light Fields
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What is a 4D Light Field?

Ray tracers render images by modeling geometry Ray tracers render images by modeling geometry 
(slow for complex scenes).(slow for complex scenes).

Light fields render images by modeling light rays (fast, Light fields render images by modeling light rays (fast, 
independent of scene complexity, but large).independent of scene complexity, but large).
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Parameterizing Light RaysParameterizing Light Rays

–– Measure intersection of each ray with 2 reference planes.Measure intersection of each ray with 2 reference planes.
–– Ray value = Ray value = LL ((ss,, tt, , uu, , v v ),  ),  a 4D Signala 4D Signal
–– Sample into a Sample into a 4D4D array.array.

ds
t

u
v

z

x
y

V
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1 2( , , , ) ( , , , )**** ( , )**** ( , )F Fy s t u v x s t u v h s u h t v=
Input ray 
image

Output ray 
image

4D Wedge 4D Wedge

d

y
x

z

s
t

u
v

PRINCIPLE:  
The Axes of the 
2D Wedges 
Focus in a 3D 
Spatial Plane at 
a Fixed 
Distance From 
The Viewer

V
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Structure of the 4D IIR Filter Bank Structure of the 4D IIR Filter Bank 
Used to Make 4D Wedge Pass BandsUsed to Make 4D Wedge Pass Bands
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Rendered image at novel Rendered image at novel 
camera position and camera position and 

orientationorientation

Gantry image at Gantry image at ss,,t t =0=0

An example of light field measurement and renderingAn example of light field measurement and rendering
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Results of 4D IIR Filtering for DepthResults of 4D IIR Filtering for Depth
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4D IIR Broad Band Hyper Cone Filter Focused on Far Tree

in 4D Lightfield with Time-varying Viewer Location

Input 4D Lightfield Output 4D Lightfield
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Real-time Hardware Implementations –
Spatio-Acoustical Array Processing, Video 
Image Processing, Video Watermarking

FPGA single-chip 2D and 3D FIR implementations up to 
100 MHz (published) using scanned arrays

TI DSP board implementations (ongoing) using Polyphase 
3D Cone Filter Banks (published) for Object Tracking in 
Video (ongoing)

Using Known Directionality of 2D/3D Impulse Response 
Transients to Reduce Complexity (2D published and 3D 
ongoing)
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Ongoing Progress – Spatio-Acoustical Array 
Processing, Video Image Processing, Video 

Watermarking

4D Filters for Lightfield Processing with potential 
applications in computer vision

3D Watermarking Demonstration uses Directional 3D 
Filters to Recover Spatial-temporal Watermarks
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Application :  3D Video Watermarking

Embedding Hidden Data 
in Spatio-temporal 

Sequences
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