Loading [a11y]/accessibility-menu.js
Subspace Oddity - Optimization on Product of Stiefel Manifolds for EEG Data | IEEE Conference Publication | IEEE Xplore

Subspace Oddity - Optimization on Product of Stiefel Manifolds for EEG Data


Abstract:

Dimensionality reduction of high-dimensional electroencephalography (EEG) covariance matrices is crucial for effective utilization of Riemannian geometry in Brain-Compute...Show More

Abstract:

Dimensionality reduction of high-dimensional electroencephalography (EEG) covariance matrices is crucial for effective utilization of Riemannian geometry in Brain-Computer Interfaces (BCI). In this paper, we propose a novel similarity-based classification method that relies on dimensionality reduction of EEG covariance matrices. Conventionally, the dimension of the original high-dimensional space is reduced by projecting into one low-dimensional space, and the similarity is learned only based on the single space. In contrast, our method, MUltiple SUbspace Mdm Estimation (MUSUME), obtains multiple low-dimensional spaces that enhance class separability by solving the proposed optimization problem, then the similarity is learned in each low-dimensional space. This multiple projection approach encourages finding the space that is more useful for similarity learning. Experimental evaluation with high-dimensionality EEG datasets (128 channels) confirmed that MUSUME proved significant improvement for classification (p < 0.001) and also it showed the potential to beat the existing method relying on only one subspace representation.
Date of Conference: 06-11 June 2021
Date Added to IEEE Xplore: 13 May 2021
ISBN Information:

ISSN Information:

Conference Location: Toronto, ON, Canada

Contact IEEE to Subscribe

References

References is not available for this document.