2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDCHLG-1.5
Paper Title A Multi-Stage Progressive Learning Strategy for COVID-19 Diagnosis using Chest Computed Tomography with Imbalanced Data
Authors Zaifeng Yang, Institute of High Performance Computing, A*STAR, Singapore; Yubo Hou, Zhenghua Chen, Le Zhang, Institute for Infocomm Research, A*STAR, Singapore; Jie Chen, Hong Kong Baptist University, Hong Kong SAR China
SessionCHLG-1: COVID-19 Diagnosis
LocationZoom
Session Time:Monday, 07 June, 09:30 - 12:00
Presentation Time:Monday, 07 June, 09:30 - 12:00
Presentation Poster
Topic Grand Challenge: COVID-19 Diagnosis
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In this paper, a multi-stage progressive learning strategy is investigated to train classifiers for COVID-19 Diagnosis using imbalanced Chest Computed Tomography Data acquired from patients infected with COVID-19 Pneumonia, Community Acquired Pneumonia (CAP) and from normal healthy subjects. In the first learning stage, pre-processed volumetric CT data together with the segmented lung masks are fed into a 3D ResNet module, and an initial classification result can be obtained. However, due to categorical data imbalance, we observe large differences in sensitivity between COVID-19 and CAP cases. In the second stage, five learning models are independently trained over data with only COVID-19 and CAP cases, and are then ensembled to further discriminate the two classes. The final classification results are obtained by combining the predictions from both stages. Based on the validation dataset, we have evaluated our method and compared it with up-to-date methods in terms of overall accuracy and sensitivity for each class. The validation results validate the accuracy of the proposed multi-stage learning strategy. The overall accuracy of the validation dataset is 88.8%, and the sensitivities are 0.873, 0.789 and 1 for COVID-19, CAP and normal cases, respectively.