2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPTM-8.6
Paper Title Active Estimation from Multimodal Data
Authors Arpan Mukherjee, Ali Tajer, Rensselaer Polytechnic Institute, United States; Pin-Yu Chen, Payel Das, IBM, United States
SessionSPTM-8: Estimation Theory and Methods 2
LocationGather.Town
Session Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Poster
Topic Signal Processing Theory and Methods: [SSP] Statistical Signal Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract The paper considers the problem of estimating a covariate parameter shared by multiple statistical models. Under the objective of estimating the parameter with target reliability with the fewest number of samples from these models, a fundamental question is how to glean samples from the statistical models. This question is especially important when the models are not equally descriptive or informative about the parameter, each being the most informative only for a specific regime of the parameter. This paper provides 1) an active sampling framework that specifies how the samples should be collected from different models over time in a data-adaptive fashion; 2) a stopping criterion specifying when the collected data is informative enough to form a reliable estimate for the covariate parameter; and 3) a terminal estimation rule. These rules, collectively, are shown to admit certain optimality guarantees. Numerical evaluations are provided to compare the performance with relevant existing approaches.