2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-18.1
Paper Title GENERALIZED POLYTOPIC MATRIX FACTORIZATION
Authors Gokcan Tatli, Alper T. Erdogan, Koc University, Turkey
SessionMLSP-18: Matrix Factorization and Applications
LocationGather.Town
Session Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-MFC] Matrix factorizations/completion
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Polytopic Matrix Factorization (PMF) is introduced as a flexible data decomposition tool with potential applications in unsupervised learning. PMF assumes a generative model where observations are lossless linear mixtures of some samples drawn from a particular polytope. Assuming that these samples are sufficiently scattered inside the polytope, a determinant maximization based criterion is used to obtain latent polytopic factors from the corresponding observations. This article aims to characterize all eligible polytopic sets that are suitable for the PMF framework. In particular, we show that any polytope whose set of vertices have only permutation and/or sign invariances qualifies for PMF framework. Such a rich set of possibilities enables elastic modeling of independent/dependent latent factors with combination of features such as relatively sparse/anti-sparse subvectors, mixture of signed/nonnegative components with optionally prescribed domains.