2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMMSP-2.6
Paper Title Hierarchical Refined Attention For Scene Text Recognition
Authors Min Zhang, Meng Ma, Ping Wang, Peking University, China
SessionMMSP-2: Deep Learning for Multimedia Analysis and Processing
LocationGather.Town
Session Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Poster
Topic Multimedia Signal Processing: Emerging Areas in Multimedia
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Recent years have witnessed increased interests in scene text recognition (STR). Current state-of-the-art (SOTA) approaches adopt sequence-to-sequence (Seq2Seq) structure to leverage the mutual interaction between images and textual information. However, these methods still struggle to recognize texts in arbitrary shapes. The leading cause is that it brings about information loss and negative noises when directly compressing two-dimension image features into one-dimension vectors. This paper proposes a novel framework named hierarchical refined attention network (HRAN) for STR. HRAN obtains refined representations with the hierarchical attention, which localizes the precise region of current character from two-dimension perspective. Two novel co-attention mechanisms, stacked and guided co-attention, explicitly leverage dependency between spatial-aware contextual features and region-aware visual features without extra character annotations. Experiments show that both on regular and irregular texts, HRAN achieves highly competitive performance compared to SOTA models.