2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-13.2
Paper Title A COMPARISON OF METHODS FOR OOV-WORD RECOGNITION ON A NEW PUBLIC DATASET
Authors Rudolf A Braun, Srikanth Madikeri, Petr Motlicek, Idiap Research Institute, Switzerland
SessionSPE-13: Speech Recognition 5: New Algorithms
LocationGather.Town
Session Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Poster
Topic Speech Processing: [SPE-GASR] General Topics in Speech Recognition
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract A common problem for automatic speech recognition systems is how to recognize words that they did not see during training. Currently there is no established method of evaluating different techniques for tackling this problem. We propose using the CommonVoice dataset to create test sets for multiple languages which have a high out-of-vocabulary (OOV) ratio relative to a training set and release a new tool for calculating relevant performance metrics. We then evaluate, within the context of a hybrid ASR system, how much better subword models are at recognizing OOVs, and how much benefit one can get from incorporating OOV-word information into a existing system by modifying WFSTs. Additionally, we propose a new method for modifying a subword-based language model so as to better recognize OOV-words. We showcase very large improvements in OOV-word recognition and make both the data and code available.