2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIVMSP-16.3
Paper Title DYNAMIC POINT CLOUD COMPRESSION USING A CUBOID ORIENTED DISCRETE COSINE BASED MOTION MODEL
Authors Ashek Ahmmed, Manoranjan Paul, Charles Sturt University, Australia; Manzur Murshed, FAU, Australia; David Taubman, University of New South Wales, Australia
SessionIVMSP-16: Point Clouds and Depth
LocationGather.Town
Session Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVCOM] Image & Video Communications
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Immersive media representation format based on point clouds has underpinned significant opportunities for extended reality applications. Point cloud in its uncompressed format require very high data rate for storage and transmission. The video based point cloud compression technique projects a dynamic point cloud into geometry and texture video sequences. The projected texture video is then coded using modern video coding standard like HEVC. Since the properties of projected texture video frames are different from traditional video frames, HEVC-based commonality modeling can be inefficient. An improved commonality modeling technique is proposed that employs discrete cosine basis oriented motion models and the domains of such models are approximated by homogeneous regions called cuboids. Experimental results show that the proposed commonality modeling technique can yield savings in bit rate of up to 4.17%.