Paper ID | IVMSP-27.1 | ||
Paper Title | UNSUPERVISED AUDIO-VISUAL SUBSPACE ALIGNMENT FOR HIGH-STAKES DECEPTION DETECTION | ||
Authors | Leena Mathur, Maja Matarić, University of Southern California, United States | ||
Session | IVMSP-27: Multi-modal Signal Processing | ||
Location | Gather.Town | ||
Session Time: | Friday, 11 June, 11:30 - 12:15 | ||
Presentation Time: | Friday, 11 June, 11:30 - 12:15 | ||
Presentation | Poster | ||
Topic | Image, Video, and Multidimensional Signal Processing: [IVARS] Image & Video Analysis, Synthesis, and Retrieval | ||
IEEE Xplore Open Preview | Click here to view in IEEE Xplore | ||
Abstract | Automated systems that detect deception in high-stakes situations can enhance societal well-being across medical, social work, and legal domains. Existing models for detecting high-stakes deception in videos have been supervised, but labeled datasets to train models can rarely be collected for most real-world applications. To address this problem, we propose the first multimodal unsupervised transfer learning approach that detects real-world, high-stakes deception in videos without using high-stakes labels. Our subspace-alignment (SA) approach adapts audio-visual representations of deception in lab-controlled low-stakes scenarios to detect deception in real-world, high-stakes situations. Our best unsupervised SA models outperform models without SA, outperform human ability, and perform comparably to a number of existing supervised models. Our research demonstrates the potential for introducing subspace-based transfer learning to model high-stakes deception and other social behaviors in real-world contexts with a scarcity of labeled behavioral data. |