2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-10.4
Paper Title DEEP CONVOLUTIONAL AND RECURRENT NETWORKS FOR POLYPHONIC INSTRUMENT CLASSIFICATION FROM MONOPHONIC RAW AUDIO WAVEFORMS
Authors Kleanthis Avramidis, Agelos Kratimenos, Christos Garoufis, Athanasia Zlatintsi, Petros Maragos, National Technical University of Athens, Greece
SessionMLSP-10: Deep Learning for Speech and Audio
LocationGather.Town
Session Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-MUSAP] Applications in music and audio processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Sound Event Detection and Audio Classification tasks are traditionally addressed through time-frequency representations of audio signals such as spectrograms. However, the emergence of deep neural networks as efficient feature extractors has enabled the direct use of audio signals for classification purposes. In this paper, we attempt to recognize musical instruments in polyphonic audio by only feeding their raw waveforms into deep learning models. Various recurrent and convolutional architectures incorporating residual connections are examined and parameterized in order to build end-to-end classifiers with low computational cost and only minimal preprocessing. We obtain competitive classification scores and useful instrument-wise insight through the IRMAS test set, utilizing a parallel CNN-BiGRU model with multiple residual connections, while maintaining a significantly reduced number of trainable parameters.