2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-1.6
Paper Title RNN-T BASED OPEN-VOCABULARY KEYWORD SPOTTING IN MANDARIN WITH MULTI-LEVEL DETECTION
Authors Zuozhen Liu, Ta Li, Pengyuan Zhang, Key Laboratory of Speech Acoustics and Content Understanding, Institute of Acoustics, China
SessionSPE-1: Speech Recognition 1: Neural Transducer Models 1
LocationGather.Town
Session Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Poster
Topic Speech Processing: [SPE-GASR] General Topics in Speech Recognition
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Despite the recent prevalence of keyword spotting (KWS) in smart-home, open-vocabulary KWS remains a keen but unmet need among the users. In this paper, we propose an RNN Transducer (RNN-T) based keyword spotting system with a constrained attention mechanism biasing module that biases the RNN-T model towards a specific keyword of interest. The atonal syllables are adopted as the modeling units, which addresses the out-of-vocabulary (OOV) problem. A multi-level detection is applied to the posterior probabilities for the judgement. Evaluating on the AISHELL-2 dataset shows our proposed method outperforms the RNN-T-based approach by 2.70\% in false reject rate (FRR) at 1 false alarm (FA) per hour. We further provide insights into the role of each stage of the detection cascade, where most negative samples are filtered out by the first stage with high computational efficiency.