2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIVMSP-1.2
Paper Title MS-CSPN: MULTI-SCALE CASCADE SPATIAL PYRAMID NETWORK FOR OBJECT DETECTION
Authors Tianyuan Wang, University of Chinese Academy of Sciences, China; Can Ma, Institute of Information Engineering, Chinese Academy of Sciences, China; Haoshan Su, University of Chinese Academy of Sciences, China; Weiping Wang, Institute of Information Engineering, Chinese Academy of Sciences, China
SessionIVMSP-1: Object Detection 1
LocationGather.Town
Session Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVARS] Image & Video Analysis, Synthesis, and Retrieval
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Scale variation is one of the key challenges in object detection. One solution is Image Pyramid, which employs images of multiple resolutions for training. Another solution is Feature Pyramid, which uses multi-scale features for prediction and is widely used in current object detectors due to its high efficiency. However, the representational power of each scale in Feature Pyramid is inconsistent, which makes the performance lower than Image Pyramid. To solve this problem and obtain better detection performance, we propose a novel network named Multi-Scale Cascade Spatial Pyramid Network (MS-CSPN) to strengthen Feature Pyramid. First, we design CSPN to expand the receptive field in a cascade form to detect objects of different scales. Secondly, we propose a Cross-Scale Sharing Strategy, which shares the parameters of CSPN at all scales. Finally, we introduce global context information to enhance MS-CSPN. Experimental results on the MS-COCO benchmark show that the proposed MS-CSPN improves the mAP by a large margin compared to previous related works.