2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-7.3
Paper Title The ins and outs of speaker recognition: lessons from VoxSRC 2020
Authors Yoohwan Kwon, Yonsei University, South Korea; Hee-Soo Heo, Bong-Jin Lee, Joon Son Chung, Naver Corporation, South Korea
SessionSPE-7: Speaker Recognition 1: Benchmark Evaluation
LocationGather.Town
Session Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Poster
Topic Speech Processing: [SPE-SPKR] Speaker Recognition and Characterization
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract The VoxCeleb Speaker Recognition Challenge (VoxSRC) at Interspeech 2020 offers a challenging evaluation for speaker recognition systems, which includes celebrities playing different parts in movies. The goal of this work is robust speaker recognition of utterances recorded in these challenging environments. We utilise variants of the popular ResNet architecture for speaker recognition and perform extensive experiments using a range of loss functions and training parameters. To this end, we optimise an efficient training framework that allows powerful models to be trained with limited time and resources. Our trained models demonstrate improvements over most existing works with lighter models and a simple pipeline. The paper shares the lessons learned from our participation in the challenge.