2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDAUD-9.1
Paper Title MIND THE BEAT: DETECTING AUDIO ONSETS FROM EEG RECORDINGS OF MUSIC LISTENING
Authors Ashvala Vinay, Alexander Lerch, Grace Leslie, Georgia Institute of Technology, United States
SessionAUD-9: Music Information Retrieval and Music Language Processing 1: Beat and Melody
LocationGather.Town
Session Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-MIR] Music Information Retrieval and Music Language Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We propose a deep learning approach to predicting audio event onsets in electroencephalogram (EEG) recorded from users as they listen to music. We use a publicly available dataset containing ten popular songs and concurrently recorded EEG. We generate a sequence of onset labels for the songs in our dataset and trained neural networks (a fully connected network (FCN) and a recurrent neural network (RNN)) to parse one second windows of input EEG to predict one second windows of onsets in the audio. We compare our RNN network to both the standard spectral-flux based novelty function and the FCN. We find that our RNN was able to produce results that reflected its ability to generalize better than the other methods. Since there are no pre-existing works on this topic, the numbers presented in this paper may serve as useful benchmarks for future approaches to this research problem.