2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDAUD-9.4
Paper Title IMPROVING AUTOMATIC DRUM TRANSCRIPTION USING LARGE-SCALE AUDIO-TO-MIDI ALIGNED DATA
Authors I-Chieh Wei, Academia Sinica, Taiwan; Chih-Wei Wu, Netflix, Inc., USA, United States; Li Su, Academia Sinica, Taiwan
SessionAUD-9: Music Information Retrieval and Music Language Processing 1: Beat and Melody
LocationGather.Town
Session Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-MIR] Music Information Retrieval and Music Language Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract One of the major challenges in Automatic Drum Transcription (ADT) research is the lack of large-scale labeled dataset featuring audio with polyphonic mixtures; this limitation around data availability greatly impedes the progress of data-driven approaches in the context of ADT. To tackle this issue, we propose a semi-automatic way of compiling a labeled dataset using the audio-to-MIDI alignment technique. The resulting dataset consists of 1565 polyphonic mixtures of music with audio-aligned MIDI ground truth. To validate the quality and generality of this dataset, an ADT model based on Convolutional Neural Network (CNN) is trained and evaluated on several publicly available datasets. The evaluation results suggest that our proposed model, which is trained solely on the compiled dataset, compares favorably with the state-of-the-art ADT systems. The result also implies the possibility of leveraging audio-to-MIDI alignment in creating datasets for a broader range of audio-related tasks.