2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-34.6
Paper Title A HIERARCHICAL SUBSPACE MODEL FOR LANGUAGE-ATTUNED ACOUSTIC UNIT DISCOVERY
Authors Bolaji Yusuf, Bogazici University, Turkey; Lucas Ondel, Lukáš Burget, Jan "Honza" Cernocky, Brno University of Technology, Czechia; Murat Saraclar, Bogazici University, Turkey
SessionMLSP-34: Subspace Learning and Applications
LocationGather.Town
Session Time:Thursday, 10 June, 15:30 - 16:15
Presentation Time:Thursday, 10 June, 15:30 - 16:15
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-SBML] Subspace and manifold learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In this work, we propose a hierarchical subspace model for acoustic unit discovery. In this approach, we frame the task as one of learning embeddings on a low-dimensional phonetic subspace, and simultaneously specify the subspace itself as an embedding on a hyper-subspace. We train the hyper-subspace on a set of transcribed languages and transfer it to the target language. In the target language, we infer both the language and unit embeddings in an unsupervised manner, and in so doing, we simultaneously learn a subspace of units specific to that language and the units that dwell on it. We conduct experiments on TIMIT and two low-resource languages: Mboshi and Yoruba. Results show that our model outperforms major acoustic unit discovery techniques, both in terms of clustering quality and segmentation accuracy.