2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDHLT-18.6
Paper Title An End-to-End Actor-Critic-Based Neural Coreference Resolution System
Authors Yu Wang, Yilin Shen, Hongxia Jin, Samsung Research America, United States
SessionHLT-18: Language Understanding 6: Summarization and Comprehension
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Human Language Technology: [HLT-STPA] Segmentation, Tagging, and Parsing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract The target of a coreference resolution system is to cluster all mentions that refer to the same entity in a given context. All coreference resolution systems need to solve two subtasks; one task is to detect all of the potential mentions, and the other is to learn the linking of an antecedent for each possible mention. In this paper, we propose an actor-critic-based neural coreference resolution system, which can achieve both mention detection and mention clustering by leveraging an actor-critic deep reinforcement learning technique and a joint training algorithm. We experiment on the BERT model to generate different input span representations. Our model with the BERT span representation achieves the state-of-the-art performance among the models on the CoNLL-2012 Shared Task English Test Set.