2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-7.2
Paper Title ON THE DETECTION OF PITCH-SHIFTED VOICE: MACHINES AND HUMAN LISTENERS
Authors David Looney, Nikolay D. Gaubitch, Pindrop, United Kingdom
SessionSPE-7: Speaker Recognition 1: Benchmark Evaluation
LocationGather.Town
Session Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Poster
Topic Speech Processing: [SPE-SPKR] Speaker Recognition and Characterization
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We present a performance comparison between human listeners and a simple algorithm for the task of speech anomaly detection. The algorithm utilises an intentionally small set of features derived from the source-filter model, with the aim of validating that key components of source-filter theory characterise how humans perceive anomalies. We furthermore recognise that humans are adept at detecting anomalies without prior exposure to a given anomaly class. To that end, we also consider the algorithm performance when operating via the principle of unsupervised learning where a null model is derived from normal speech recordings. We evaluate both the algorithm and human listeners for pitch-shift detection where the pitch of a speech sample is intentionally modified using software, a phenomenon of relevance to the fields of fraud detection and forensics. Our results show that humans can only detect pitch-shift reliably at more extreme levels, and that the performance of the algorithm matches closely with that of humans.