2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPTM-22.4
Paper Title TRAINING LOGICAL NEURAL NETWORKS BY PRIMAL–DUAL METHODS FOR NEURO-SYMBOLIC REASONING
Authors Songtao Lu, Naweed Khan, Ismail Akhalwaya, Ryan Riegel, Lior Horesh, Alexander Gray, IBM Research, United States
SessionSPTM-22: Signal Processing Theory and Methods
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Signal Processing Theory and Methods: [OPT] Optimization Methods for Signal Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Parametrized machine learning models for inference often include non-linear and nonconvex constraints over the parameters and meta-parameters. Training these models to convergence is in general difficult, and naive methods such as projected gradient descent or grid search are not easily able to enforce the functional constraints. This work explores the optimization of a constrained Neural Network (familiar from machine learning but with parameter constraints), in the service of neuro-symbolic logical reasoning. Logical Neural Networks (LNNs) provide a well-justified, interpretable example of training under non-trivial constraints. In this paper, we propose a unified framework for solving this nonlinear programming problem by leveraging primal-dual optimization methods, and quantify the corresponding convergence rate to the Karush-Kuhn-Tucker (KKT) points of this problem. Extensive numerical results on both a toy example and training an LNN over real datasets validate the efficacy of the method.