2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-52.2
Paper Title LOW-COMPLEXITY, REAL-TIME JOINT NEURAL ECHO CONTROL AND SPEECH ENHANCEMENT BASED ON PERCEPNET
Authors Jean-Marc Valin, Srikanth Tenneti, Karim Helwani, Umut Isik, Arvindh Krishnaswamy, Amazon, Canada
SessionSPE-52: Speech Enhancement 8: Echo Cancellation and Other Tasks
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Speech Processing: [SPE-ENHA] Speech Enhancement and Separation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Speech enhancement algorithms based on deep learning have greatly surpassed their traditional counterparts and are now being considered for the task of removing acoustic echo from hands-free communication systems. This is a challenging problem due to both real-world constraints like loudspeaker non-linearities, and to limited compute capabilities in some communication systems. In this work, we propose a system combining a traditional acoustic echo canceller, and a low-complexity joint residual echo and noise suppressor based on a hybrid signal processing/deep neural network (DSP/DNN) approach. We show that the proposed system outperforms both traditional and other neural approaches, while requiring only 5.5% CPU for real-time operation. We further show that the system can scale to even lower complexity levels.