2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPCOM-7.4
Paper Title DYNAMIC RESOURCE OPTIMIZATION FOR ADAPTIVE FEDERATED LEARNING AT THE WIRELESS NETWORK EDGE
Authors Paolo Di Lorenzo, Claudio Battiloro, Mattia Merluzzi, Sergio Barbarossa, Sapienza University of Rome, Italy
SessionSPCOM-7: Communication-enabled Applications
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Signal Processing for Communications and Networking: [SPCN-NETW] Networks and Network Resource allocation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract The aim of this paper is to propose a novel dynamic resource allocation strategy for energy-efficient federated learning at the wireless network edge, with latency and learning performance guarantees. We consider a set of devices collecting local data and uploading processed information to an edge server, which runs stochastic gradient descent (SGD) to perform distributed learning and adaptation. Hinging on Lyapunov stochastic optimization tools, we dynamically optimize radio parameters (e.g., set of transmitting devices, transmit powers) and computation resources (e.g., CPU cycles at devices and at server) in order to strike the best trade-off between energy, latency, and performance of the federated learning task. The general framework is then customized to the case of federated least mean squares (LMS) estimation. Numerical results illustrate the effectiveness of our strategy to perform energy-efficient, low-latency, federated machine learning at the wireless network edge.