2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPTM-18.4
Paper Title NEAR-OPTIMAL RESAMPLING IN PARTICLE FILTERS USING THE ISING ENERGY MODEL
Authors Muhammed Tahsin Rahman, Mohammad Javad-Kalbasi, Shahrokh Valaee, University of Toronto, Canada
SessionSPTM-18: Sampling Theory, Analysis and Methods
LocationGather.Town
Session Time:Thursday, 10 June, 15:30 - 16:15
Presentation Time:Thursday, 10 June, 15:30 - 16:15
Presentation Poster
Topic Signal Processing Theory and Methods: [SMDSP] Sampling, Multirate Signal Processing and Digital Signal Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Resampling increasing the variance of the tracking algorithm in Particle Filtering (PF). Instead of utilizing resampling procedures that rely on asymptotic convergence properties, we show that intelligently selecting and replicating a set of samples can better represent the posterior approximation and improve the overall performance of the PF. To this end, we formulate the resampling procedure as an integer program that minimizes an upper bound on the Kullback-Leibler divergence (KLD) between the resampled distribution and the posterior approximation. We then transform the problem into an Ising energy minimization problem, which we are able to efficiently solve. Applying our novel paradigm to a challenging sequential importance resampling (SIR) simulation shows faster convergence over the number of resampled particles and a 35% improvement in the median KLD for a fixed number of particles.