2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-6.3
Paper Title REST: Robust Learned Shrinkage-Thresholding network taming inverse problems with model mismatch
Authors Wei Pu, Chao Zhou, University College London, United Kingdom; Yonina C. Eldar, Weizmann Institute of Science, Israel; Miguel R.D. Rodrigues, University College London, United Kingdom
SessionMLSP-6: Compressed Sensing and Learning
LocationGather.Town
Session Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Poster
Topic Machine Learning for Signal Processing: [SMDSP-SAP] Sparsity-aware processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We consider compressive sensing problems with model mismatch where one wishes to recover a sparse high-dimensional vector from low-dimensional observations subject to uncertainty in the measurement operator. In particular, we design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem. Our proposed network -- named Robust lErned Shrinkage-Thresholding (REST) -- exhibits additional features including enlarged number of parameters and normalization processing compared to state-of-the-art deep architecture Learned Iterative Shrinkage-Thresholding Algorithm (LISTA), leading to the reliable recovery of the signal under sample-wise varying model mismatch. Our proposed network is also shown to outperform LISTA in compressive sensing problems under sample-wise varying model mismatch.