Paper ID | HLT-16.3 | ||
Paper Title | VARIATIONAL DIALOGUE GENERATION WITH NORMALIZING FLOWS | ||
Authors | Tien-Ching Luo, Jen-Tzung Chien, National Chiao Tung University, Taiwan | ||
Session | HLT-16: Applications in Natural Language | ||
Location | Gather.Town | ||
Session Time: | Thursday, 10 June, 16:30 - 17:15 | ||
Presentation Time: | Thursday, 10 June, 16:30 - 17:15 | ||
Presentation | Poster | ||
Topic | Human Language Technology: [HLT-MLMD] Machine Learning Methods for Language | ||
IEEE Xplore Open Preview | Click here to view in IEEE Xplore | ||
Abstract | Conditional variational autoencoder (cVAE) has shown promising performance in dialogue generation. However, there still exists two issues in dialog cVAE model. The first issue is the Kullback-Leiblier (KL) vanishing problem which results in degenerating cVAE into a simple recurrent neural network. The second issue is the assumption of isotropic Gaussian prior for latent variable which is too simple to assure diversity of the generated responses. To handle these issues, a simple distribution should be transformed into a complex distribution and simultaneously the value of KL divergence should be preserved. This paper presents the dialogue flow VAE (DF-VAE) for variational dialogue generation. In particular, KL vanishing is tackled by a new normalizing flow. An inverse autoregressive flow is proposed to transform isotropic Gaussian prior to a rich distribution. In the experiments, the proposed DF-VAE is significantly better than the other methods in terms of different evaluation metrics. The diversity of generated dialogue responses is enhanced. Ablation study is conducted to illustrate the merit of the proposed flow models. |