2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIVMSP-1.6
Paper Title Object-Oriented Relational Distillation for Object Detection
Authors Shuyu Miao, Rui Feng, Fudan University, China
SessionIVMSP-1: Object Detection 1
LocationGather.Town
Session Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVARS] Image & Video Analysis, Synthesis, and Retrieval
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Object detection models have achieved increasingly better performance based on more complex architecture designs, but the heavy computation limits their further widespread application on the devices with insufficient computational power. To this end, we propose a novel Object-Oriented Relational Distillation (OORD) method that drives small detection models to have an effective performance like large detection models with constant efficiency. Here, we introduce to distill relative relation knowledge from teacher/large models to student/small models, which promotes the small models to learn better soft feature representation by the guiding of large models. OORD consists of two parts, i.e., Object Extraction (OE) and Relation Distillation (RD). OE extracts foreground features to avoid background feature interference, and RD distills the relative relations between the foreground features through graph convolution. Related experiments conducted on various kinds of detection models show the effectiveness of OORD, which improves the performance of the small model by nearly 10% without additional inference time cost.