2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDAUD-27.6
Paper Title MISALIGNMENT RECOGNITION IN ACOUSTIC SENSOR NETWORKS USING A SEMI-SUPERVISED SOURCE ESTIMATION METHOD AND MARKOV RANDOM FIELDS
Authors Gabriel F Miller, Andreas Brendel, Walter Kellermann, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Sharon Gannot, Bar-Ilan University, Israel
SessionAUD-27: Acoustic Sensor Array Processing 1: Array Design and Calibration
LocationGather.Town
Session Time:Friday, 11 June, 11:30 - 12:15
Presentation Time:Friday, 11 June, 11:30 - 12:15
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-ASAP] Acoustic Sensor Array Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In this paper, we consider the problem of acoustic source localization by acoustic sensor networks (ASNs) using a promising, learning-based technique that adapts to the acoustic environment. In particular, we look at the scenario when a node in the ASN is displaced from its position during training. As the mismatch between the ASN used for learning the localization model and the one after a node displacement leads to erroneous position estimates, a displacement has to be detected and the displaced nodes need to be identified. We propose a method that considers the disparity in position estimates made by leave-one-node-out (LONO) sub-networks and uses a Markov random field (MRF) framework to infer the probability of each LONO position estimate being aligned, misaligned or unreliable while accounting for the noise inherent to the estimator. This probabilistic approach is advantageous over naive detection methods, as it outputs a normalized value that encapsulates conditional information provided by each LONO sub-network on whether the reading is in misalignment with the overall network. Experimental results confirm that the performance of the proposed method is consistent in identifying compromised nodes in various acoustic conditions.