2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIVMSP-20.3
Paper Title LEARNING MODEL-BLIND TEMPORAL DENOISERS WITHOUT GROUND TRUTHS
Authors Yanghao Li, Bichuan Guo, Jiangtao Wen, Tsinghua University, China; Zhen Xia, Shan Liu, Tencent Media Lab, China; Yuxing Han, Research Institute of Tsinghua University in Shenzhen, China
SessionIVMSP-20: Denoising and Deblurring
LocationGather.Town
Session Time:Thursday, 10 June, 13:00 - 13:45
Presentation Time:Thursday, 10 June, 13:00 - 13:45
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVTEC] Image & Video Processing Techniques
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Denoisers trained with synthetic noises often fail to cope with the diversity of real noises, giving way to methods that can adapt to unknown noise without noise modeling or ground truth. Previous image-based method leads to noise overfitting if directly applied to temporal denoising, and has inadequate temporal information management especially in terms of occlusion and lighting variation. In this paper, we propose a general framework for temporal denoising that successfully addresses these challenges. A novel twin sampler assembles training data by decoupling inputs from targets without altering semantics, which not only solves the noise overfitting problem, but also generates better occlusion masks by check-ing optical flow consistency. Lighting variation is quantified based on the local similarity of aligned frames. Our method consistently outperforms the prior art by 0.6-3.2dB PSNR on multiple noises, datasets and network architectures. State-of-the-art results on reducing model-blind video noises are achieved.