2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDASPS-3.5
Paper Title Low Complexity SLM for OFDMA System with Implicit Side Information
Authors Shicheng Hu, Miao Yang, ShanghaiTech University, China; Kai Kang, Hua Qian, Shanghai Advanced Research Institute, China
SessionASPS-3: IoT
LocationGather.Town
Session Time:Thursday, 10 June, 13:00 - 13:45
Presentation Time:Thursday, 10 June, 13:00 - 13:45
Presentation Poster
Topic Applied Signal Processing Systems: Signal Processing Systems [DIS-EMSA]
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Selected mapping (SLM) is an efficient peak-to-average-power-ratio (PAPR) reduction algorithm for orthogonal frequency division multiplexing (OFDM) systems. Conventional SLM requires extra resources for side information transmission. If the side information is transmitted implicitly, significantly high computation overhead is imposed to the receiver at the user equipment (UE) side. In the orthogonal frequency division multiple access (OFDMA) system, the SLM can not be directly applied since the UE does not have access to the signal of other UEs. In this paper, we propose a novel SLM algorithm for the OFDMA system that requires no transmission. With the proposed SLM algorithm, each UE can receive its own data without the knowledge of other UEs. The SLM demapping at the UE side is much simplified. Besides, detection of the implicit side information is more robust than existing SLM algorithms. Numerical results validate the theoretical performance of the proposed algorithm.