2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDAUD-16.2
Paper Title ON THE PREDICTABILITY OF HRTFS FROM EAR SHAPES USING DEEP NETWORKS
Authors Yaxuan Zhou, Hao Jiang, Vamsi Krishna Ithapu, Facebook Reality Labs, United States
SessionAUD-16: Modeling, Analysis and Synthesis of Acoustic Environments 2: Spatial Audio
LocationGather.Town
Session Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-SARR] Spatial Audio Recording and Reproduction
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Head-Related Transfer Function (HRTF) individualization is critical for immersive and realistic spatial audio rendering in augmented/virtual reality. Neither measurements nor simulations using 3D scans of head/ear are scalable for practical applications. More efficient machine learning approaches are being explored recently, to predict HRTFs from ear images or anthropometric features. However, it is not yet clear whether such models can provide an alternative for direct measurements or high-fidelity simulations. Here, we aim to address this question. Using 3D ear shapes as inputs, we explore the bounds of HRTF predictability using deep neural networks. To that end, we propose and evaluate two models, and identify the lowest achievable spectral distance error when predicting the true HRTF magnitude spectra.