2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-6.6
Paper Title A SPARSE CODING APPROACH TO AUTOMATIC DIET MONITORING WITH CONTINUOUS GLUCOSE MONITORS
Authors Anurag Das, Seyedhooman Sajjadi, Bobak Mortazavi, Theodora Chaspari, Projna Paromita, Laura Ruebush, Nicolaas Deutz, Ricardo Gutierrez-Osuna, Texas A&M University, United States
SessionMLSP-6: Compressed Sensing and Learning
LocationGather.Town
Session Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Poster
Topic Machine Learning for Signal Processing: [SMDSP-SAP] Sparsity-aware processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Measuring dietary intake is a major challenge in the management of chronic diseases. Current methods rely on self-report measures, which are cumbersome to obtain and often unreliable. This article presents an approach to estimate dietary intake automatically by analyzing the post-prandial glucose response (PPGR) of a meal, as measured with continuous glucose monitors. In particular, we propose a sparse-coding technique that can be used to estimate the amounts of macronutrients (carbohydrates, protein, fat) in a meal from the meal’s PPGR. We use Lasso regularization to represent the PPGR of a new meal as a sparse combination of PPGRs in a dictionary, then combine the sparse weights with the macronutrient amounts in the dictionary’s meals to estimate the macronutrients in the new meal. We evaluate the approach on a dataset containing nine standardized meals and their corresponding PPGRs, consumed by fifteen participants. The proposed technique consistently outperforms two baseline systems based on ridge regression and nearest-neighbors, in terms of correlation and normalized root mean square error of the predictions.