2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-47.6
Paper Title REFINING AUTOMATIC SPEECH RECOGNITION SYSTEM FOR OLDER ADULTS
Authors Liu Chen, Meysam Asgari, Oregon Health and Science University, United States
SessionSPE-47: Speech Recognition 17: Speech Adaptation and Normalization
LocationGather.Town
Session Time:Friday, 11 June, 11:30 - 12:15
Presentation Time:Friday, 11 June, 11:30 - 12:15
Presentation Poster
Topic Speech Processing: [SPE-RECO] Acoustic Modeling for Automatic Speech Recognition
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Building a high quality automatic speech recognition (ASR) system with limited training data has been a challenging task particularly for a narrow target population. Open-sourced ASR systems, trained on sufficient data from adults, are susceptible on seniors’ speech due to acoustic mismatch between adults and seniors. With 12 hours of training data, we attempt to develop an ASR system for socially isolated seniors (80+ years old) with possible cognitive impairments. We experimentally identify that ASR for the adult population performs poorly on our target population and transfer learning (TL) can boost the system’s performance. Standing on the fundamental idea of TL, tuning model parameters, we further improve the system by leveraging the attention mechanism to utilize the model’s intermediate information. Utilizing our intuitive conditional-independent attention mechanism, our optimal model achieves $1.58\%$ absolute improvements over the TL model.