2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-10.2
Paper Title LEARNING SEPARABLE TIME-FREQUENCY FILTERBANKS FOR AUDIO CLASSIFICATION
Authors Jie Pu, Imperial College London, United Kingdom; Yannis Panagakis, University of Athens, Greece; Maja Pantic, Imperial College London, United Kingdom
SessionMLSP-10: Deep Learning for Speech and Audio
LocationGather.Town
Session Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-DEEP] Deep learning techniques
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract State-of-the-art audio classification systems often apply deep neural networks on hand-crafted features (e.g., spectrogram-based representations), instead of learning features directly from raw audio. Moreover, these audio networks have millions of unknown parameters need to be learned, which causes a great demand for computational resources and training data. In this paper, we aim to learn audio representations directly from raw audio, and at the same time mitigate its training burden by employing a light-weight architecture. In particular, we propose to learn separable filters, parametrized with only a few variables, namely center frequency and bandwidth, facilitating training and offering interpretability of learned representations. The generality of the proposed method is demonstrated by applying it onto two applications, namely 1) speaker identification and 2) acoustic event recognition. Experimental results indicate its effectiveness on these applications, especially when small amount of training data is available.