2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPTM-15.1
Paper Title LEARNING BOLLOBÁS-RIORDAN GRAPHS UNDER PARTIAL OBSERVABILITY
Authors Michele Cirillo, Vincenzo Matta, University of Salerno, Italy; Ali H. Sayed, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
SessionSPTM-15: Graph Topology Inference and Clustering
LocationGather.Town
Session Time:Thursday, 10 June, 14:00 - 14:45
Presentation Time:Thursday, 10 June, 14:00 - 14:45
Presentation Poster
Topic Signal Processing Theory and Methods: [SIPG] Signal and Information Processing over Graphs
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract This work examines the problem of learning the topology of a network (graph learning) from the signals produced at a subset of the network nodes (partial observability). This challenging problem was recently tackled assuming that the topology is drawn according to an Erdős-Rényi model, for which it was shown that graph learning under partial observability is achievable, exploiting in particular homogeneity across nodes and independence across edges. However, several real-world networks do not match the optimistic assumptions of homogeneity/independence, for example, high heterogeneity is often observed between very connected nodes (hubs) and scarcely connected peripheral nodes. Random graphs with preferential attachment were conceived to overcome these issues. In this work, we discover that, over first-order vector autoregressive systems with a stable Laplacian combination matrix, graph learning is achievable under partial observability, when the network topology is drawn according to a popular preferential attachment model known as the Bollobás-Riordan model.