2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDBIO-9.2
Paper Title DeepNodule: Multi-task Learning of Segmentation Bootstrap for Pulmonary Nodule Detection
Authors Jingqin Li, Kun Wang, Dan Yang, Xiaohong Zhang, Chongqing University, China; Chen Liu, The First Affiliated Hospital of Army Medical University, China
SessionBIO-9: Medical Image Analysis
LocationGather.Town
Session Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Poster
Topic Biomedical Imaging and Signal Processing: [BIO-MIA] Medical image analysis
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Pulmonary nodule detection and segmentation are the necessary successively steps in lung cancer screening with low-dose computed tomography (CT) scans. However, the state-of-the-art models focus on solving tasks separately, thereby ignore the correlation between each task. Besides, most nodule detectors adopt anchor-based method falling to achieve good performance in low FPs per scan. To overcome those barriers, we present a novel multi-task 3D convolutional network (DeepNodule) for simultaneous nodule detection and segmentation in a shared-and-fined manner. Meanwhile, we utilize the center-point of the predicted segmentation masks to refine the bounding box coordinate and get a more precise nodule location. Furthermore, we design a 3D Gated Channel Transformation convolutional attention block for learning nodule features better. Experiments conducted on LUNA16 dataset demonstrates that DeepNodule obtains competitive performance, with the sensitivity of nodule candidate detection achieving 92.0\%, and the accuracy of nodule segmentation reaching 80.04\%.