2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-10.5
Paper Title Learning Audio Embeddings with User Listening Data for Content-based Music Recommendation
Authors Ke Chen, University of California, San Diego, United States; Beici Liang, Xiaoshuan Ma, Minwei Gu, Tencent Music Entertainment, China
SessionMLSP-10: Deep Learning for Speech and Audio
LocationGather.Town
Session Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-MUSAP] Applications in music and audio processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Personalized recommendation on new track releases has always been a challenging problem in the music industry. To combat this problem, we first explore user listening history and demographics to construct a user embedding representing the user's music preference. With the user embedding and audio data from user's liked and disliked tracks, an audio embedding can be obtained for each track using metric learning with Siamese networks. For a new track, we can decide the best group of users to recommend by computing the similarity between the track's audio embedding and different user embeddings, respectively. The proposed system yields state-of-the-art performance on content-based music recommendation tested with millions of users and tracks. Also, we extract audio embeddings as features for music genre classification tasks. The results show the generalization ability of our audio embeddings.