2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIFS-5.1
Paper Title STEP-GAN: A One-Class Anomaly Detection Model with Applications to Power System Security
Authors Mohammad Adiban, Norwegian University of Science and Technology, Norway; Arash Safari, University of Tehran, Iran; Giampiero Salvi, Norwegian University of Science and Technology, Norway
SessionIFS-5: Privacy and Information Security
LocationGather.Town
Session Time:Thursday, 10 June, 15:30 - 16:15
Presentation Time:Thursday, 10 June, 15:30 - 16:15
Presentation Poster
Topic Information Forensics and Security: [CYB] Cybersecurity
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Smart grid systems (SGSs), and in particular power systems, play a vital role in today's urban life. The security of these grids is now threatened by adversaries that use false data injection (FDI) to produce a breach of availability, integrity, or confidential principles of the system. We propose a novel structure for the multi-generator generative adversarial network (GAN) to address the challenges of detecting adversarial attacks. We modify the GAN objective function and the training procedure for the malicious anomaly detection task. The model only requires normal operation data to be trained, making it cheaper to deploy and robust against unseen attacks. Moreover, the model operates on the raw input data, eliminating the need for feature extraction. We show that the model reduces the well-known mode collapse problem of GAN-based systems, it has low computational complexity and considerably outperforms baseline systems about 55% (OCAN) in terms of accuracy on a freely available cyber attack dataset.