2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDBIO-6.3
Paper Title A PROBABILISTIC MODEL FOR SEGMENTATION OF AMBIGUOUS 3D LUNG NODULE
Authors Xiaojiang Long, Wei Chen, Qiuli Wang, Xiaohong Zhang, Chongqing University, China; Chen Liu, The First Affiliated Hospital of Army Medical University, China; Yucong Li, Jiuquan Zhang, Chongqing University Cancer Hospital, China
SessionBIO-6: Medical Image Segmentation
LocationGather.Town
Session Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Poster
Topic Biomedical Imaging and Signal Processing: [BIO-MIA] Medical image analysis
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Many medical images domains suffer from inherent ambiguities. A feasible approach to resolve the ambiguity of lung nodule in the segmentation task is to learn a distribution over segmentations based on a given 2D lung nodule image. Whereas lung nodule with 3D structure contains dense 3D spatial information, which is obviously helpful for resolving the ambiguity of lung nodule, but so far no one has studied it. To this end we propose a probabilistic generative segmentation model consisting of a V-Net and a conditional variational autoencoder. The proposed model obtains the 3D spatial information of lung nodule with V-Net to learn a density model over segmentations. It is capable of efficiently producing multiple plausible semantic lung nodule segmentation hypotheses to assist radiologists in making further diagnosis to resolve the present ambiguity. We evaluate our method on publicly available LIDC-IDRI dataset and achieves a new state-of-theart result with 0.231±0.005 in D2GED. This result demonstrates the effectiveness and importance of leveraging the 3D spatial information of lung nodule for such problems. Code is available at: https://github.com/jiangjiangxiaolong/PV-Net