2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDAUD-7.3
Paper Title AUDITORY FILTERBANKS BENEFIT UNIVERSAL SOUND SOURCE SEPARATION
Authors Han Li, Northwestern Polytechnical University, Technical University of Munich, China; Kean Chen, Northwestern Polytechnical University, China; Bernhard U. Seeber, Technical University of Munich, Germany
SessionAUD-7: Audio and Speech Source Separation 3: Deep Learning
LocationGather.Town
Session Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-SEP] Audio and Speech Source Separation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract For separating two arbitrary sources from monaural recordings, the encoder-separator-decoder framework is popular in recent years. We investigated three kinds of filterbanks in the encoder: free, parameterized, and fixed. We proposed parameterized Gammatone and Gammachirp filterbanks, which improved performance with fewer parameters and better interpretability. Next, the properties of different filterbanks were investigated. Through training the network, an entirely freely learned filterbank emerges with properties similar to a series of bandpass filters spaced on a nonlinear scale - similar to the auditory system. We also explored the underlying separation mechanisms learned by the network through a classic auditory segregation experiment, revealing that the model separates mixtures based on the general principle (proximity of frequency and time). In summary, results demonstrate that the separation network automatically picks up the filterbank properties and separation mechanisms that are similar to those which have developed over millions of years in humans.