2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-31.6
Paper Title SIG2SIG : SIGNAL TRANSLATION NETWORKS TO TAKE THE REMAINS OF THE PAST
Authors SangYeon Kim, Hyunwoo Lee, Jonghee Han, Joon-Ho Kim, Samsung Research, South Korea
SessionMLSP-31: Recommendation Systems
LocationGather.Town
Session Time:Thursday, 10 June, 14:00 - 14:45
Presentation Time:Thursday, 10 June, 14:00 - 14:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-TRL] Transfer learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In these days, deep learning models are applied to various tasks in industrial area. However, as the hardware of sensors are developed together, if we want to use the model then we need to collect new sensor data and train with them again. Moreover, sometimes we need to tune the model for the task and adjust the hyperparameters. In this paper, we propose a signal translation networks, Sig2Sig, that converts from the new sensor signals to old ones in order to reusing the past model, which was trained on plenty of old sensor signals. We only need a small paired-dataset for training Sig2Sig and then translated signals from new sensor can be classified by the past classification model almost without performance degradation. To do such a robust translation, our model is based on modified u-net with squeeze and excitation networks, instance normalization, and with attention parts for robust outputs. We also use various loss functions which includes uncertainty loss for ignoring noise parts and focusing on important parts of signal images. Our results show that not only translated signal is realistic and similar with target data but also the past classification model can be reused on new sensor domain.