2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDAUD-32.1
Paper Title LIGHTWEIGHT AND INTERPRETABLE NEURAL MODELING OF AN AUDIO DISTORTION EFFECT USING HYPERCONDITIONED DIFFERENTIABLE BIQUADS
Authors Shahan Nercessian, Andy Sarroff, Kurt James Werner, iZotope, Inc., United States
SessionAUD-32: Audio for Multimedia and Audio Processing Systems
LocationGather.Town
Session Time:Friday, 11 June, 14:00 - 14:45
Presentation Time:Friday, 11 June, 14:00 - 14:45
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-AUMM] Audio for Multimedia and Audio Processing Systems
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In this work, we propose using differentiable cascaded biquads to model an audio distortion effect. We extend trainable infinite impulse response (IIR) filters to the hyperconditioned case, in which a transformation is learned to directly map external parameters of the distortion effect to its internal filter and gain parameters, along with activations necessary to ensure filter stability. We propose a novel, efficient training scheme of IIR filters by means of a Fourier transform. Our models have significantly fewer parameters and reduced complexity relative to more traditional black-box neural audio effect modeling methodologies using finite impulse response filters. Our smallest, best-performing model adequately models a BOSS MT-2 pedal at 44.1 kHz, using a total of 40 biquads and only 210 parameters. Its model parameters are interpretable, can be related back to the original analog audio circuit, and can even be intuitively altered by machine learning non-specialists after model training. Quantitative and qualitative results illustrate the effectiveness of the proposed method.