2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDBIO-9.6
Paper Title A NEW FRAMEWORK BASED ON TRANSFER LEARNING FOR CROSS-DATABASE PNEUMONIA DETECTION
Authors Xinxin Shan, Ying Wen, East China Normal University, China
SessionBIO-9: Medical Image Analysis
LocationGather.Town
Session Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Poster
Topic Biomedical Imaging and Signal Processing: [BIO-MIA] Medical image analysis
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Cross-database classification means that the model is able to apply to the serious disequilibrium of data distributions, and it is trained by one database while tested by another database. Thus, cross-database pneumonia detection is a challenging task. In this paper, we proposed a new framework based on transfer learning for cross-database pneumonia detection. First, based on transfer learning, we fine-tune a backbone that pre-trained on non-medical data by using a small amount of pneumonia images, which improves the detection performance on homogeneous dataset. Then in order to make the fine-tuned model applicable to cross-database classification, the adaptation layer combined with a self-learning strategy is proposed to retrain the model. The adaptation layer is to make the heterogeneous data distributions approximate and the self-learning strategy helps to tweak the model by generating pseudo-labels. Experiments on three pneumonia databases show that our proposed model completes the cross-database detection of pneumonia and shows good performance.