2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-48.5
Paper Title PIPELINE SAFETY EARLY WARNING METHOD FOR DISTRIBUTED SIGNAL USING BILINEAR CNN AND LIGHTGBM
Authors Yiyuan Yang, Yi Li, Haifeng Zhang, Tsinghua University, China
SessionMLSP-48: Neural Network Applications
LocationGather.Town
Session Time:Friday, 11 June, 14:00 - 14:45
Presentation Time:Friday, 11 June, 14:00 - 14:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-APPL] Applications of machine learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Oil and gas pipelines are known as the backbone of global energy, and securing their safety is crucial for energy supply. In this study, we utilized a novel machine learning method based on the spatiotemporal features of distributed optical fiber sensor signals to monitor the safety of oil and gas pipelines in real time. Encouraging empirical results on a large amount of data collected from real sites confirmed that our model could accurately locate and identify the damage events of a pipeline in real time under strong noise and various hardware conditions, and could effectively handle the signal drift problem. Furthermore, as a generalized tool, the proposed solution could be applied to other industrial inspection fields. Our codes and video demos are available at https://github.com/yyysjz1997/B-CNN_LGBM-PSEW.