2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDAUD-16.1
Paper Title REFINEMENT OF DIRECTION OF ARRIVAL ESTIMATORS BY MAJORIZATION-MINIMIZATION OPTIMIZATION ON THE ARRAY MANIFOLD
Authors Robin Scheibler, Masahito Togami, LINE Corporation, Japan
SessionAUD-16: Modeling, Analysis and Synthesis of Acoustic Environments 2: Spatial Audio
LocationGather.Town
Session Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-ASAP] Acoustic Sensor Array Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We propose a generalized formulation of direction of arrival estimation that includes many existing methods such as steered response power, subspace, coherent and incoherent, as well as speech sparsity-based methods. Unlike most conventional methods that rely exclusively on grid search, we introduce a continuous optimization algorithm to refine DOA estimates beyond the resolution of the initial grid. The algorithm is derived from the majorization-minimization (MM) technique. We derive two surrogate functions, one quadratic and one linear. Both lead to efficient iterative algorithms that do not require hyperparameters, such as step size, and ensure that the DOA estimates never leave the array manifold, without the need for a projection step. In numerical experiments, we show that the accuracy after a few iterations of the MM algorithm nearly removes dependency on the resolution of the initial grid used. We find that the quadratic surrogate function leads to very fast convergence, but the simplicity of the linear algorithm is very attractive, and the performance gap small.