2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-54.2
Paper Title END-TO-END SPEAKER DIARIZATION AS POST-PROCESSING
Authors Shota Horiguchi, Hitachi, Ltd., Japan; Paola Garcia, Johns Hopkins University, United States; Yusuke Fujita, Hitachi, Ltd., Japan; Shinji Watanabe, Johns Hopkins University, United States; Kenji Nagamatsu, Hitachi, Ltd., Japan
SessionSPE-54: End-to-End Speaker Diarization and Recognition
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Speech Processing: [SPE-SPKR] Speaker Recognition and Characterization
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract This paper investigates the utilization of an end-to-end diarization model as post-processing of conventional clustering-based diarization. Clustering-based diarization methods partition frames into clusters of the number of speakers; thus, they typically cannot handle overlapping speech because each frame is assigned to one speaker. On the other hand, some end-to-end diarization methods can handle overlapping speech by treating the problem as multi-label classification. Although some methods can treat a flexible number of speakers, they do not perform well when the number of speakers is large. To compensate for each other's weakness, we propose to use a two-speaker end-to-end diarization method as post-processing of the results obtained by a clustering-based method. We iteratively select two speakers from the results and update the results of the two speakers to improve the overlapped region. Experimental results show that the proposed algorithm consistently improved the performance of the state-of-the-art methods across CALLHOME, AMI, and DIHARD II datasets.