2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDCHLG-1.4
Paper Title COVID-19 DIAGNOSTIC USING 3D DEEP TRANSFER LEARNING FOR CLASSIFICATION OF VOLUMETRIC COMPUTERISED TOMOGRAPHY CHEST SCANS
Authors Shuohan Xue, Charith Abhayaratne, University of Sheffield, United Kingdom
SessionCHLG-1: COVID-19 Diagnosis
LocationZoom
Session Time:Monday, 07 June, 09:30 - 12:00
Presentation Time:Monday, 07 June, 09:30 - 12:00
Presentation Poster
Topic Grand Challenge: COVID-19 Diagnosis
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract The Novel Coronavirus, known as COVID-19, can cause acute respiratory distress syndrome symptoms to human beings and has become a major threat to public health [1]. This paper proposes a COVID-19 diagnosis based on analysis of Computerised tomography (CT) chest scans. In recent years, deep learning-based analysis of CT chest scans has demonstrated competitive sensitivity for pneumonia prognosis. We exploit a 3D Network-based transfer learning approach to classify volumetric CT scans with a novel pre-processing method to render the volume with salient features. This work uses the pre-trained 3D ResNet50 as the backbone network. The 3D network is trained on a dataset consisting of3 classes: Community-Acquired Pneumonia(CAP), COVID-19 and Normal patient. The experimental results using 4-fold cross-validation has shown an overall accuracy of 86.94%with the COVID-19 sensitivity and specificity attaining to87.79%and89.88%, respectively.