2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDMLSP-43.3
Paper Title TOWARDS PARKINSON’S DISEASE PROGNOSIS USING SELF-SUPERVISED LEARNING AND ANOMALY DETECTION
Authors Hongchao Jiang, Wei Yang Bryan Lim, Jer Shyuan Ng, Nanyang Technological University, Singapore; Yu Wang, Ying Chi, Alibaba Group, Singapore; Chunyan Miao, Nanyang Technological University, Singapore
SessionMLSP-43: Biomedical Applications
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-APPL] Applications of machine learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Parkinson's disease (PD) is a chronic disease with a high risk of incidence after the age of 60 and is a problem for many countries facing an aging population. Current works have mainly focused on supervised learning using data collected from various sensors to differentiate between PD and healthy subjects. However, such supervised methods are not ideal for prognosis where there are no labels (i.e., we do not know in advance which subjects will develop PD in the future). We propose to tackle the problem as a semi-supervised anomaly detection task, where we model the physiological patterns of healthy subjects instead. A self-supervised learning technique first learns a good representation of the sensor signals. The representations are then adapted to capture inter-class patterns for anomaly detection. Evaluation on a large-scale PD dataset shows that our approach can learn discriminative features.