Paper ID | AUD-4.1 |
Paper Title |
IMPROVING THE ROBUSTNESS OF RIGHT WHALE DETECTION IN NOISY CONDITIONS USING DENOISING AUTOENCODERS AND AUGMENTED TRAINING |
Authors |
William Vickers, Ben Milner, University of East Anglia, United Kingdom; Robert Lee, Gardline Geosurvey Limited, United Kingdom |
Session | AUD-4: Music Signal Analysis, Processing, and Synthesis 2: Analysis and Processing |
Location | Gather.Town |
Session Time: | Tuesday, 08 June, 14:00 - 14:45 |
Presentation Time: | Tuesday, 08 June, 14:00 - 14:45 |
Presentation |
Poster
|
Topic |
Audio and Acoustic Signal Processing: [AUD-CLAS] Detection and Classification of Acoustic Scenes and Events |
IEEE Xplore Open Preview |
Click here to view in IEEE Xplore |
Virtual Presentation |
Click here to watch in the Virtual Conference |
Abstract |
The aim of this paper is to examine denoising autoencoders (DAEs) for improving the detection of right whales recorded in harsh marine environments. Passive acoustic recordings are taken from autonomous surface vehicles (ASVs) and are subject to noise from sources such as shipping and offshore construction. To mitigate the noise we apply DAEs and consider how best to train the classifier by augmenting clean training data with examples contaminated by noise. Evaluations find that the DAE improves detection accuracy and is particularly effective when the classifier is trained on data that has itself been denoised rather than using a clean model. Further, testing on unseen noises is also effective particularly for noises that exhibit similar character to noises seen in training. |