2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDIVMSP-18.5
Paper Title MULTI-LEVEL ADAPTIVE REGION OF INTEREST AND GRAPH LEARNING FOR FACIAL ACTION UNIT RECOGNITION
Authors Jingwei Yan, Hikvision Research Institute, China; Boyuan Jiang, Zhejiang University, China; Jingjing Wang, Qiang Li, Chunmao Wang, Shiliang Pu, Hikvision Research Institute, China
SessionIVMSP-18: Faces in Images & Videos
LocationGather.Town
Session Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVARS] Image & Video Analysis, Synthesis, and Retrieval
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract In facial action unit (AU) recognition tasks, regional feature learning and AU relation modeling are two effective aspects which are worth exploring. However, the limited representation capacity of regional features makes it difficult for relation models to embed AU relationship knowledge. In this paper, we propose a novel multi-level adaptive ROI and graph learning (MARGL) framework to tackle this problem. Specifically, an adaptive ROI learning module is designed to automatically adjust the location and size of the predefined AU regions. Meanwhile, besides relationship between AUs, there exists strong relevance between regional features across multiple levels of the backbone network as level-wise features focus on different aspects of representation. In order to incorporate the intra-level AU relation and inter-level AU regional relevance simultaneously, a multi-level AU relation graph is constructed and graph convolution is performed to further enhance AU regional features of each level. Experiments on BP4D and DISFA demonstrate the proposed MARGL significantly outperforms the previous state-of-the-art methods.