2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDAUD-24.6
Paper Title Guided Variational Autoencoder for Speech Enhancement With a Supervised Classifier
Authors Guillaume Carbajal, Julius Richter, Timo Gerkmann, Universität Hamburg, Germany
SessionAUD-24: Signal Enhancement and Restoration 1: Deep Learning
LocationGather.Town
Session Time:Thursday, 10 June, 16:30 - 17:15
Presentation Time:Thursday, 10 June, 16:30 - 17:15
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-SEN] Signal Enhancement and Restoration
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Recently, variational autoencoders have been successfully used to learn a probabilistic prior over speech signals, which is then used to perform speech enhancement. However, variational autoencoders are trained on clean speech only, which results in a limited ability of extracting the speech signal from noisy speech compared to supervised approaches. In this paper, we propose to guide the variational autoencoder with a supervised classifier separately trained on noisy speech. The estimated label is a high-level categorical variable describing the speech signal (e.g. speech activity) allowing for a more informed latent distribution compared to the standard variational autoencoder. We evaluate our method with different types of labels on real recordings of different noisy environments. Provided that the label better informs the latent distribution and that the classifier achieves good performance, the proposed approach outperforms the standard variational autoencoder and a conventional neural network-based supervised approach.