2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPTM-4.5
Paper Title DECENTRALIZED OPTIMIZATION OVER NOISY, RATE-CONSTRAINED NETWORKS: HOW WE AGREE BY TALKING ABOUT HOW WE DISAGREE
Authors Rajarshi Saha, Stanford University, United States; Stefano Rini, National Chiao Tung University, Taiwan; Milind Rao, Amazon Alexa, United States; Andrea Goldsmith, Princeton University, United States
SessionSPTM-4: Estimation, Detection and Learning over Networks 2
LocationGather.Town
Session Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Poster
Topic Signal Processing Theory and Methods: Signal Processing over Networks
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract In decentralized optimization, multiple nodes in a network collaborate to minimize the sum of their local loss functions. The information exchange between nodes required for the task is often limited by network connectivity. We consider a generalization of this setting, in which communication is further hindered by (i) a finite data-rate constraint on the signal transmitted by any node, and (ii) an additive noise corrupting the signal received by any node. We develop a novel algorithm for this scenario: Decentralized Lazy Mirror Descent with Differential Exchanges (DLMD-DiffEx), which guarantees convergence of the local estimates to the optimal solution under the given communication constraints. A salient feature of DLMD-DiffEx is the introduction of additional proxy variables that are maintained by the nodes to account for the disagreement in their estimates due to channel noise and data-rate constraints. We investigate the performance of DLMD-DiffEx both from a theoretical perspective as well as through numerical evaluations.